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Abstract Conditional preference networks (CP-nets) provide a compact and intuitive

graphical tool to represent the preferences of a user. However, learning such a structure

is known to be a difficult problem due to its combinatorial nature. We propose, in this

paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets.

In particular, our algorithm takes into account the contradictions between multiple

users’ preferences by searching in a principled way the variables that affect the

preferences. We provide complexity results of the algorithm, and demonstrate its

efficiency through an empirical evaluation on synthetic and on real databases.

Keywords Query-based learning algorithm � Contradictory preferences �
Preference learning � Conditional preference networks

1 Introduction

Representing, learning, and reasoning over users preferences are a central question

in many Artificial Intelligence-related fields. An important body of research has

focused on preference representation and reasoning in different ways, e.g.,
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conditional preference networks’ (CP-nets) representations (Boutilier et al. 2004),

and in decision theory for the decision aiding (Tsoukiàs 2008). However, only few

works have concerned their learning (e.g., preference learning problems (Fürnkranz

and Hüllermeier 2010), or learning CP-nets representation (Chevaleyre et al. 2010;

Koriche and Zanuttini 2010; Liu et al. 2014). This work focuses on learning

combinatorial preferences, in the framework of CP-nets as introduced in Boutilier

et al. (2004).

CP-nets are a formal framework for preference representation based on the notion

of ceteris paribus (i.e., ‘‘all other things being equal’’). This notion of ceteris paribus

captures an intuitive idea: it is difficult to express one preference between two

totally different objects,1 nevertheless, it is easier to express one preference between

two almost identical ones. In this work, we consider that ceteris paribus means that

two objects differ only by one attribute value. For instance, if two hotels differ by

their price ceteris paribus, it is probably easier to choose one of them. CP-nets

implement this notion by factorizing the preferences, leading to a compact graphical

representation.

Learning CP-nets is known to be NP-Complete (Alanazi et al. 2016; Boutilier

et al. 2004; Chevaleyre et al. 2010), even for acyclic ones. Despite this ‘negative’

result, some works have tackled this problem, e.g., regression-based learning (Eck-

hardt and Vojtás 2009; Eckhardt and Vojtás 2010; Liu et al. 2016), learning by

reduction to 2-SAT (Dimopoulos et al. 2009), and learning by user queries (Che-

valeyre et al. 2010; Guerin et al. 2013; Koriche and Zanuttini 2010).

In all approaches cited above, the preferences of the users are considered to be

coherent ones (i.e., non-contradictory preferences—some other works (Liu et al.

2013, 2014) manage the contradictions by removing cycles in the preferences).

A contradictory preference is a preference, such that the reversed one also exists.

This can be the result of two users that express their true preferences but have

different opinions, i.e., in a multiple users database, person A will prefer an

alternative a to an alternative b, whereas person B will prefer b to a.
In this paper, we consider the problem of learning from users’ preferences that

may be contradictory. We propose a new, efficient, and robust learning algorithm

for CP-nets. Our aim is to come up with a learning procedure applicable to

recommendation systems, as illustrated in Fig. 1. Classically, a CP-net is

constructed for each user. However, in this work, we use a CP-net as a way to

aggregate preferences of many users. Our learning procedure can be seen as a way

to learn an average CP-net of the common preferences between different users. To

do this, we exploit the notion of exact learning, initially proposed by Angluin

(1987) in the context of query learning as introduced in Koriche and Zanuttini

(2010). More precisely, we proceed by querying (a set of users or a database) the

preference between two objects that differ by just one attribute value, and in case of

contradiction detection, we minimize its influence by choosing the optimal

attributes that maximize the coherence of the overall learned CP-net.

Our learning algorithm is composed of two phases: a general learning phase

aiming at adding the preference in the graphical structure of the CP-net, and a parent

1 An object can be a hotel having as a set of attributes: the number of rooms, the price, etc.
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search phase aiming at updating this graphical structure. This two-phase decom-

position is classical in CP-nets learning. However, the originality of our approach

lies in both these phases. In the general learning phase, our method adds the less

possible number of preferences in the structure which significantly decreases the

computation time, and in the search parent phase, we propose a principled updating

strategy leading to the minimization of the contradictions in the overall structure by

choosing the parent variable that splits the large number of rules stemming from the

data.

2 Preliminaries

Let us first introduce some notations and concepts related to CP-nets (Boutilier

et al. 2004).

2.1 Conditional preference networks (CP-nets)

Let V ¼ fX1; . . .;Xng be a set of n binary variables (variables are denoted by capital

letters X and sets of variables are denoted by bold letters X), also called world. Each

variable X 2 V is associated with a domain DomðfXgÞ ¼ fx; x0g (to simplify the

notation, we will omit the brackets and write Dom(X)) of values it can take. The

value x 2 DomðXÞ of a variable X 2 V is called an assignment. We denote by

DomðVÞ ¼ DomðX1Þ � . . .� DomðXnÞ the domain of the values of V. We call a

state vector x 2 DomðXÞ an assignment of all Xi 2 X, with X � V (if X ¼ V, such a

vector is called outcome).

Example 1 Let us consider a hotel that contains a set of rooms (defined by their

available occupancy (2 or 3 places), the size of the kitchen (small or big), and the

presence (or not) of a swimming pool). More formally, we consider a world V
containing three variables V ¼ foccupancy, kitchen, swimming poolg, with
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Fig. 1 General scheme of a learning procedure for CP-nets

Query-based learning of acyclic conditional\ldots

123



DomðoccupancyÞ ¼ f2, 3g, DomðkitchenÞ ¼ fsmall, bigg, and

DomðswimmingpoolÞ ¼ fyes, nog. Thus, a state (in this case, an outcome) h is

the vector h ¼ ð2; small; noÞ standing for a room with 2 places, and a small kitchen

without swimming pool.

We consider in this study a strict preference relation as a partial ordering2 � on

DomðVÞ, i.e., x � y meaning that an outcome x is strictly preferred to an outcome y.
Let x 2 DomðXÞ and y 2 DomðYÞ be two states, with X;Y � V;X \ Y ¼ ;. The

notation xy 2 DomðX [ YÞ is the concatenation of the state x and the state y.

Definition 1 (Preferential independence) Let V be a world. A set of variables

X � V is preferentially independent of its complement Y ¼ VnX iff 8x; x0 2
DomðXÞ and 8y; y0 2 DomðYÞ, we have

xy � x0y iff xy0 � x0y0:

The previous definition means that regardless the assignments of other variables,

if we prefer x to x0, this relation always holds.

Example 2 Let us say that regardless the number of persons who want to rent a

hotel room, everyone prefers to have a swimming pool rather than nothing. One can

justify this statement by the fact that the price of the room is not affected by the

presence or not of the swimming pool. Hence, we say that the swimming pool

variable is preferentially independent of the occupancy and the kitchen variables.

Definition 2 (Conditional preferential independence) Let V be a world, and X;Y;
and Z be nonempty sets that partition V. X is conditionally preferentially

independent of Y given a state z 2 DomðZÞ iff 8x; x0 2 DomðXÞ and

8y; y0 2 DomðYÞ, we have

xyz � x0yz iff xy0z � x0y0z:

If X is conditionally preferentially independent of Y for all z 2 DomðZÞ, then X is

conditionally preferentially independent of Y given Z.

Definition 2 means that (1) X is preferentially independent of Y ceteris paribus,

and (2) the preferences over the states of X change according to the assignments of

the set of variables Z. We say that Z conditions X.

Example 3 Suppose we have a couple (with a child) who needs to rent a hotel

room in the previous world V ¼ foccupancy, kitchen, swimming poolg. When they

are without their child, they prefer to eat in a restaurant, so having a small kitchen is

rational. However, if they are with their child, they prefer to cook, so they need a big

kitchen. This shows that the kitchen variable is conditioned by the occupancy

variable.

2 A partial ordering � is an asymmetric, irreflexive, and transitive relation, i.e., if x � y, then y 6� x
(asymmetry), x 6� x (irreflexivity), and if x � y and y � z, then x � z (transitivity).
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Let o; o0 2 DomðVÞ be two outcomes. We call a swap, denoted by ðo; o0ÞV (which

induces o � o0), a pair of two outcomes, such that the assignment of only one

variable V changes between both. This variable is called the swap variable of

ðo; o0ÞV . Furthermore, o½X� represents the vector of assignments of all variables in

the set X � V (when X ¼ V, o½X� ¼ o).

Example 4 Let h1 ¼ ð2, small, yesÞ; h2 ¼ ð3, small, yes), and h3 ¼ ð2, big, no) be
three hotels. h1 and h2 differ by just one value; they define a swap, denoted by

ðh1; h2Þoccupancy. h1 and h3 (as well as h2 and h3) differ by more than one value, they

do not define a swap. h1½occupancy� ¼ ð2Þ and

h3½occupancy; swimmingpool� ¼ ð2; noÞ.

A variable X is called a parent variable of another variable V if the assignment of

X changes the preference over the assignments of V. More generally, Pa(V) denotes

the set of all parent variables of V. This defines a rule r, called CP-rule, of the form
r ¼ ðu : v � v0Þ with V 2 V;DomðVÞ ¼ fv; v0g;U ¼ PaðVÞ � VnfVg, and

u 2 DomðUÞ. If PaðVÞ ¼ ;, we just write r ¼ ðv � v0Þ. We say that a CP-rule

r ¼ ðu : v � v0Þ is linked by V. These rules are stored in a structure called CP-

table (for conditional preference table), which is unique for each variable Y 2 V and

is denoted by CPT(Y). A CP-table contains the preferences over the assignment of Y

for some states x 2 DomðPaðYÞÞ. When all the possible states of Pa(Y) are present,

it is said to be complete. We note by CPTðVÞ the union of all CP-tables in V:
CPTðVÞ ¼

S
V2VCPTðVÞ.

Example 5 Considering Examples 2 and 3, we can formally define the preference

rules for each variable, hence inducing a CP-table: suppose further that our couple

will always choose a hotel with a swimming pool. Their whole preferences can now

be formally represented by CPTðswimmingpoolÞ ¼ fðyes � noÞg,
CPTðoccupancyÞ ¼ fð2 � 3Þg. Finally, we know that PaðkitchenÞ ¼ foccupancyg
and CPTðkitchenÞ ¼ fð2 : small � bigÞ; ð3 : big � smallÞg that can also be repre-

sented by the following table:

2 : small � big

3 : big � small:

Definition 3 (Conditional preference network) A conditional preference network

(CP-net) N ¼ ðV;A;CPTðVÞÞ is a directed graph with V the set of vertices

(representing the variables), A the set of directed arcs, such that ðX; YÞ 2 A iff

X 2 PaðYÞ, and CPTðVÞ ¼
S

V2VCPTðVÞ. A CP-net is said complete if its

associated CP-tables are complete. We call separable CP-net a CP-net N , such

that A ¼ ;, i.e., PaðVÞ ¼ ;; 8V 2 V.

A graphic representation of a CP-net and the partial ordering of all possible

outcomes is given in Fig. 2. One can note that it is a complete and a non-separable

CP-net that contains an independent variable (swimming pool) and a variable

conditioned by another one (kitchen is conditioned by occupancy).
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Each CP-net induces a partial ordering over its outcomes. One can easily deduce

a preference between a swap ðo; o0ÞV by checking in the CP-net the validity of the

rule on the variable V, i.e., o � o0 iff o½PaðVÞ� : o½fVg� � o0½fVg�. In such an

ordering, two outcomes are adjacent iff they form a swap. If this condition holds, we

connect these outcomes from the best to the worst preferred outcome. An example is

given in Fig. 3 using Example 5 and its associated CP-net given in Fig. 2.

It is possible to obtain cycles in the outcomes preference ordering, which creates

contradictions between preferences (e.g., o1 � o2 � o1). It is known from Boutilier

et al. (2004) that for acyclic CP-nets, the associated outcomes’ preference ordering

is always acyclic. Moreover, given two different outcomes, finding the one that is

preferred to the other one in cyclic CP-nets is PSPACE-hard (Boutilier et al. 2004).

Henceforth, we focus in this paper on acyclic CP-nets.

We finally define a class of CP-nets, denoted by Cð:Þ, where (.) corresponds to a

structural property of the CP-nets. For instance, the class Cacy corresponds to the

class of all acyclic CP-nets, and the class Ctree refers to the class of all tree-shaped

CP-nets, i.e., all acyclic CP-nets N , such that jPaðVÞj � 1; 8V 2 V, where |Pa(V)|

denotes the cardinality of Pa(V). Note that Ctree � Cacy.

occupancy

kitchen

2 3

2 : small big
3 : big small

yes no
swimming pool

Fig. 2 Complete CP-net with
three variables

(2,small,yes)

(2,small,no)

(2,big,yes)

(2,big,no)

(3,big,no)

(3,small,no)

(3,small,yes)

(3,big,yes)

Fig. 3 Example of a partial
ordering over the outcomes of
the CP-net described in Fig. 2,
from the best to the worst
outcome
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2.2 Query learning algorithms for CP-nets

We discuss, in this section, the main query learning algorithms for CP-nets Koriche

and Zanuttini (2010); Guerin et al. (2013). We denote by n the number of variables

of a CP-net, i.e., jVj ¼ n, by P the target preference model,3 i.e., the structure that

we want to fit, and by N L our learned CP-net.

The first reported query learning algorithm for CP-nets in the literature Koriche

and Zanuttini (2010) proceeds by asking different questions to a user to learn her

preferences. The working assumption is that the aggregation of preferences of users

is approximately representable by an acyclic CP-net structure. Two types of queries

can be distinguished. For P and P0 two preference models:

– equivalence queries EQðP;P0Þ that return TRUE if P is equivalent to P04,
otherwise they return FALSE plus a preference counter example representing a

violated rule;

– membership queries MQðP; rÞ, which return TRUE if the rule r is satisfied in P
(denoted by P�r), otherwise they return FALSE.

In this paper, we try to fit the learned CP-net N L with the preference model P from

an oracle R (see Definition 4), then when N L 6¼ P, the equivalence query returns a

counterexample swap ðo; o0ÞV . This swap induces a rule r. Two cases are, therefore,

possible:

(i) if r 6¼ CPTðVÞ, then we will simply add r to N L;

(ii) r is violated in N L, i.e., �r 2 CPTðVÞ, then we need to find a new parent

variable for V.

In Koriche and Zanuttini (2010), it has been shown that a linear number of

equivalence queries (OðjVjÞ) and a logarithmic number of membership queries

(Oðlog2 jVjÞ) are required to learn such a CP-net. For an in-depth explanation of the

method, the interested reader can refer to Koriche and Zanuttini (2010).

The second algorithm (Guerin et al. 2013) is neither based on ceteris paribus

comparisons nor equivalence and membership queries. It is an online algorithm that

learns an acyclic CP-net and is decomposed into two phases:

1. finding a separable CP-net by asking for each variable V the preference between

the assignments v and v0,
2. updating the CP-table of each variable by finding the best set of parent variables

using a set of confident5 variables.

In this algorithm, all the parent variables are selected at the same time by phase 2. It

seeks a subset of parent variables P from the set of all confident variables C, i.e.,

3 A preference model P corresponds to a model where the preferences have properties, such that

conditional preferences, additive preferences, etc.
4 We say that two preference models P and P0 are equivalent, denoted by P 	 P0 iff they induce exactly
the same preferences.
5 We consider a variable V as confident if enough swaps that induce the rules of V are found.

Query-based learning of acyclic conditional\ldots

123



P � C � V. Moreover, for all P � C, the entire CP-table of the current variable V is

created and tested until a good one is found (i.e., a CP-table that satisfies all the

preferences). In the worst case, this algorithm needs 22
n

operations to determine, for

each variable, its parents, and its corresponding CP-table. Due to the exponential

nature of this phase, it is necessary to limit the computation by bounding the size p

of parent variables, the number e of edges in the target preference model P, and the

number q of necessary swaps to conclude that a variable becomes confident. Finally,

the algorithm can learn a CP-net in OðnpÞ, with p the maximum number of parent

variables. For more details, we refer the reader to Guerin et al. (2013).

3 Proposed algorithm for learning a CP-net

Let r ¼ ðu : v � v0Þ be a rule with V 2 V;DomðVÞ ¼ fv; v0g;PaðVÞ ¼ U � VnfVg,
and u 2 DomðUÞ. For the sake of clarity, we introduce, in this section, the notations

�r ¼ ðu : v0 � vÞ as the inverse rule of V, and rp ¼ ðup : v � v0Þ as the augmentation

of the rule r with an assignment p 2 DomðPÞ of a new parent variable

P 2 VnðU [ fVgÞ.

Definition 4 (Oracle) In this paper, an oracle R is a finite database which contains

the preferences of a group of users (i.e., a set of swaps). This database can

– answer to a membership query by finding the given preference;

– answer to an equivalence query by comparing itself with the current learned CP-

net, and by returning the first found counterexample swap if it exists.

The oracle is a central notion in query learning algorithms. We suppose here that

each of the users who expresses her preferences can have its own preference model

in her mind, which is not necessary a CP-net. Moreover, as the database (i.e., the

oracle) is finite, it cannot necessarily contain all of the possible swaps.

As in Algorithm 1 in Koriche and Zanuttini (2010), we query an oracle R
through EQðN L;PÞ if our learned CP-net N L is equivalent to the induced (the

target) preference model P of oracle R.
The target preference model P cannot generally be explicitly known due to, e.g.,

cognitive overloads for users or the size of the database. However, we suppose that

the oracle is able to differentiate its proper preference model from the learned CP-

net.

Our algorithm, in contrast with the state-of-the-art approaches, tries to take into

account contradictory preferences due to the multiple users databases that we

manipulate. These contradictions can be the result of

(i) different opinions between users;

(ii) and/or a user preference model which is not necessary compatible with a

CP-net.
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Hence, the learning procedure should be robust as much as possible to such

contradictions. In our approach, we introduce a list of violated rules L that cannot

be represented in our CP-net, because we cannot add a parent to a variable to

represent the rule in N L. Then, we say that two CP-nets N L and P are equivalent if

the oracle compares these two CP-nets without using the rules contained in L, i.e.,

EQðN L;R; LÞ.
Following the previous learning algorithms, we decompose our procedure into a

general learning phase and a parent search phase. Still, our two phases are different

from the ones in the state of the art.

3.1 General learning phase

In the exact learning theory (Angluin 1987), we look for a perfect equivalence

between the target and the learned structure. Following this perspective, we need to

completely fit N L and improve as much as possible the learning accuracy.

Algorithm 1 corresponds to the general learning phase, starting with an empty CP-

net N L.

N L is updated by the rule r induced by the counterexample swap provided by the

oracle. As in Boutilier et al. (2004), two cases can occur: the inverse rule �r is not

present in N L, and then, we just have to add r to our CP-net. But if �r is already

present, then we must find a new parent to the variable V associated with the rule r.

Since our Algorithm 1 does not always pick the real good parent (because of the

presence of contradictions in the data), the parent search procedure can fail. If this

happens (Line 11), we add r in the list of violated rules (i.e., a list that cannot be

represented in N L). Otherwise (Line 7), we remove all the CPT(V) and create a new

one that contains rp and �rp
0
.

The algorithms in Guerin et al. (2013) and Koriche and Zanuttini (2010) try to

compute the complete CP-table of V and restart for each new parent variable, which
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leads to heavy computations. Nevertheless, it is realistic to assume that in real-world

applications, CP-tables are not generally complete.

3.2 Parent search phase

The parent search phase is the most important one in the learning procedure. This is

due to the fact that several parent variables can be chosen, which may lead to bad

decisions. These local decisions have a consequence that the number of rules in the

CP-table of the current variable can be multiplied by two in the worst case.

The procedure searchParent needs as an input the counterexample swap given

by EQ and the oracle R. Its first step is to query the parent variable P of the swap

ðo; o0ÞV (with o � o0) associated with the variable V. The variable P must satisfy the

following conditions:

1. It should preserve the assignment p between two comparable6 outcomes. This is

trivial in our case, because we have a swap.

2. There should exist at least one other swap ðo00; o000ÞV associated with the same

variable V, such that the preference on V is reversed and it contains the inverse

assignment of P.

We can summarize these conditions in the following equation: let ðo; o0ÞV and

ðo00; o000ÞV be two swaps, with V ;P 2 V, such that

o½fVg� ¼ o000½fVg� 6¼ o0½fVg� ¼ o00½fVg�;
and o½fPg� ¼ o0½fPg� 6¼ o00½fPg� ¼ o000½fPg�:

ð1Þ

These constraints are modeled in Line 1 of Algorithm 2. Since we restrict ourselves

to acyclic CP-nets, a function cycle is used to test the acyclicity of N L with the

new parent variable.

We need to choose the good parent variable among all the available ones in P.
Instead of choosing a random P 2 P, we pick the variable P that minimizes the

number of swaps that violate the rule induced by the current counterexample swap,

i.e., let ðo; o0ÞV and ðo00; o000ÞV be two swaps, with V 2 V and P 2 PaðVÞ, then:

ðo½fPg� ¼ o00½fPg�ando½fVg� 6¼ o00½fVg�Þ
or ðo½fPg� 6¼ o00½fPg�ando½fVg� ¼ o00½fVg�Þ:

ð2Þ

In case of equality, we pick one of them at random.

Example 6 Back to the hotel example, suppose that we want to deduce that the

variable ‘‘swimming pool’’ is not a parent of the variable ‘‘size of the kitchen’’ (i.e., it

cannot condition the size of the kitchen). Then, we need to receive one of these swaps:

– o ¼ f2; small; yesg � o0 ¼ f2; big; yesg, and o00 ¼ f2; small; nog � o000 ¼
f2; big; nog. We can observe here that the assignments of swimming pool have

no incidence on the preference over the assignments of kitchen;

6 Two outcomes o and o0 are comparable if either o � o0 or o0 � o.
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– o ¼ f2; small; yesg � o0 ¼ f2; big; yesg, and

o00 ¼ f3; big; yesg � o000 ¼ f3; small; yesg. We can observe here that for the

same assignment of swimming pool, the preference over the assignments of

kitchen can vary.

Our parent search procedure is given in Algorithm 2. The parent detection is made

by the existence of the swap ðo00; o000ÞV and the application of Eq. (1) (we look for a

parent variable that possesses such a swap). Furthermore, the contradiction detection is

made by looking for the candidate parent variable (in the set P) which minimizes the

number of violated swaps (Eq. (2)). It is important to note that this algorithm can be

parallelized using one process for each parent candidate, thanks to the independence of

this search. However, this implementation is left for future work.

Example 7 Let us now try to learn a simple complete CP-net from Fig. 2 (without

the swimming pool variable). We begin by asking a couple if the empty learned CP-

net is equivalent to their induced one. This is obviously not the case. Consider that

they then give us the following counterexample swap

((2, big), (3, bigÞÞoccupancy. The algorithm finds the rule r ¼ ð; : 2 � 3Þ that

is added to N L. The next step is the equivalence query. Consider now that they

answer the query by returning ((2, small), (2, bigÞÞkitchen. Then, the rule

r ¼ ð; :small � big) is deduced, and is added to N L. The process is repeated

once again. Consider once more that the couple at this stage returns the following

counterexample swap ((3, big), (3, smallÞÞkitchen that induces the rule

r ¼ ð; :big � small). Since the inverse rule �r ¼ ð; :small � big) already exists,

the searchParent returns only the occupancy variable. These two new rules r3 ¼
ð3 : big � small) and �r2 ¼ ð2 : small � big) are then added in the CP-net.

We end this subsection by giving some complexity results, and commenting on

the importance of the answers ordering. We suppose here that the target preference

model is a CP-net denoted by N T .

Proposition 1 Let R be an oracle. We define by s the number of swaps contained

in R, i.e., holding in a database, or known by a user, and by n the number of

variables in a CP-net. Algorithm 2 has a complexity of Oðn3 þ nsÞ.

Proof Line 1 in Algorithm 2 has to detect a cycle in Oðnþ n2Þ 
 Oðn2Þ. The first
n is the number of variables in the CP-net and the second n2 corresponds to the
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maximum number of directed arcs in a directed graph. Finding a swap that respects

the parent condition can be computed in O(s). These steps have to be repeated for

each parent candidate. Thus, Line 1 has a total complexity of

Oððn� 1Þðsþ n2ÞÞ � Oðn3 þ nsÞ.
Line 3 has to count the number of swaps in R that respect a given condition, it is

in O(ns). Hence, Algorithm 2 has a total complexity of Oðn3 þ nsÞ h

Proposition 2 If N T 2 Ctree, then Algorithm 1 computes N L with 2n equivalence

queries and has a complexity of Oðn3 þ n2sþ neÞ, where e is the time taken by EQ

to return True or False.

Proof We need n equivalence queries to learn a separable CP-net, so it is in O(ne).

Furthermore, as N T has a tree structure, there are at most n� 1 parents (one for

each variable without one leaf in the worst case) to find and there are at most

ðn� 1Þ arcs in N L, so searchParent has a complexity of Oðn2 þ nsÞ. Finally, we
need Oðn3 þ n2sþ neÞ to compute N L, with 2n equivalence queries (n for learning

the separable part of N T and n for the adding parents part) h

Proposition 3 Algorithm 1 has a complexity of Oð2pðn4 þ n2sþ neÞÞ to compute

N L, where p ¼ max
V2V

fjPaðVÞjg, e is the time taken by EQ to return TRUE or FALSE,

and N L is an acyclic CP-net.

Proof We know from Proposition 1 that searchParent (Line 6) has a complexity

of Oðn3 þ nsÞ. We now consider the while condition at Line 3. Suppose that N T

is a complete CP-net. Then, we must have complete CP-tables that imply, for p, the

max number of parents inN T , 2
p equivalence queries (one for each rule). Moreover,

we have to remove all the rules in the CP-table when a new parent is found. In the

worst case, we need
Pp

i¼1 2
i ¼ 2ð2p � 1Þ equivalence queries to learn one CP-table,

so 2nð2p � 1Þ equivalence queries in total. We finally have a complexity of

2nð2p � 1Þðn3 þ nsþ eÞ 2 Oð2pðn4 þ n2sþ neÞÞ h

Note that s and e, which are, respectively, defined in Propositions 1 and 3,

correspond to the same process if the oracle is a database. For n the number of

variables, the maximum number of objects in a database is 2n in the binary case. The

maximum number of rules is then k� 2n. Furthermore, each of these rules is

represented by at least one swap (exactly one if k ¼ 2n). Hence, in the worst case,

s� 2n and e� 2n. However, in real-world applications, s\m � 2n (with m the

number of objects in a database) and the worst case does not hold in most of

situations.

An important remark about Algorithm 1 is that the order of the received

counterexample swaps can perturb the choice of the parent variables during the

learning phase.

Example 8 Consider a world V ¼ fA;B;Cg (with DomðAÞ ¼ fa; a0g, DomðBÞ ¼
fb; b0g and DomðCÞ ¼ fc; c0g). Consider further that the oracle R will express its

counterexample swaps in the following order: we receive abc � abc0 and deduce the
rule ð; : c � c0Þ. Then, we receive a0b0c0 � a0b0c, and we suppose that Algorithm 1
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consider the variable B as a parent variable of C. We finally receive the

counterexample swap a0bc0 � a0bc which means that the real parent variable of C is

A.

The previous example shows us that, when a choice is possible between two

variables, it is possible to choose a bad parent variable, which would not have been

occur with the order abc � abc0; a0bc0 � a0bc; a0b0c � a0b0c0. To overcome this:

1. Algorithm 1 chooses the parent variable which minimizes the contradictions

(Eq. (1)). This allows us to minimize the probability of choosing the bad parent;

2. considering the oracle R as a set of swaps (see Sect. 4), it is possible to generate

k different databases by picking at random k0 different swaps from R, to learn

one CP-net per database, and select the CP-net which minimizes the number of

contradictions between the learned CP-nets.

4 Experimental results

To evaluate the efficiency of our algorithm, two experimental protocols have been

designed: the first one aimed at comparing our approach with the algorithm given

in Guerin et al. (2013); the second one consists in demonstrating the usefulness of

our algorithm on real and on simulated databases.

Defining an accuracy measure of a learning algorithm on such a structure is not a

trivial task. There exists three different measures to define the accuracy of a learning

algorithm for CP-nets:

– a similarity measure which computes the difference between the digraphs of the

learned CP-net and the target one Liu et al. (2014). However, the target model,

in our case, is not necessary a CP-net;

– an accuracy measure consisting in comparing the rules between the learned CP-

net and the target one. However, even if this is relevant in some cases, where

there is just one violated rule, this measure can be meaningless in other cases.

Indeed, a violated rule cannot be represented in N L and then induces an

exponential number of unsatisfiable swaps, which is intractable;

– an accuracy measure consisting in comparing the number of swaps in the

database R that are in agreement with N L versus the total number of swaps in

the whole database (Guerin et al. 2013; Liu et al. 2014; Michael and

Papageorgiou 2013).

In our experiments, we consider the last measure to compute the accuracy

AccðN L;RÞ of Algorithm 1 for the learned CP-net N L with respect to a database

(oracle) R:

AccðN L;RÞ ¼
jfo �R o0jo �N L

o0gj
jfo �R o0gj ;
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where o and o0 are a ceteris paribus pair, |E| represents the cardinality of the set E,

and �R (resp. �N L
) represents the preference relation in the database R (resp. in the

outcomes preference ordering of N L).

Following Guerin et al. (2013), we consider the indecision case, denoted by

o ffl o0, meaning that one cannot decide whether o � o0 or o0 � o. These different

possibilities are given in Table 1.

We use two different runs for our algorithm to smooth the results: the first one

consists of the random generation phase of the target CP-nets or the databases, and

the second one consists of the learning phase of N L. We note these two runs by

k � l with k the random generation phase and l the learning phase. In all the graphics

in the rest of the paper, each point corresponds to a simple averaged value according

to the number of runs. The standard deviation is reported as an error bar on these

graphics.

4.1 Learning a target CP-net N T

In this subsection, we suppose that the target preference model is a CP-net, which is

denoted by N T . Then, our objective is to learn a CP-net N L from a target CP-net

N T . We suppose here that the oracle R is capable to express its CP-net N T . This

target CP-net N T is generated by the algorithm GenerateRandomCPNet given in

Subsection 5.1 in Guerin et al. (2013). This algorithm generates an acyclic, binary,

and complete random CP-net given a set of binary variables, the number of edges in

the CP-net, and the maximum number of parent variables. We begin by creating all

the conditional variables, and then, we generate a CP-table for every V 2 V: for

each of the 2PaðVÞ possible values, we randomly add either v � v0 or v0 � v.

We compare our algorithm with the one in Guerin et al. (2013). It is important to

keep in mind that the algorithm in Guerin et al. (2013) is an online algorithm, while

ours is an offline one. An online algorithm has to learn a structure with little

information, whereas we actually explore all the available information. To make the

comparison as fair as possible, we set the maximum number of parents to 5 and the

density as d ¼ #arcs
n

, which is the ratio of arcs per node of the target CP-net N T

(d ¼ 1 corresponds to the complete acyclic CP-net with respect to the parent

condition). Furthermore, we suppose here to have a non-contradictory database R.
Results of this experiment are summarized in Table 2 [values depicted in the white

cells come from Table 1 in Guerin et al. (2013)].

As one could have expected, Table 2 shows better results for our algorithm in all

the cases. However, our disagreement cases grow faster than the ones in Guerin

et al. (2013). One can observe that the algorithm in Guerin et al. (2013) establishes

Table 1 Different possible comparisons between a target preference model P and a learned CP-net N L

N LnN T o � o0 o0 � o o ffl o0

o � o0 Agrees Disagrees Indecisive

o0 � o Disagrees Agrees Indecisive

The objective is to maximize the agreement
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an equilibrium between agreement and indecision. This is due to the fact that when a

new rule r has not enough information to be accepted, neither r nor �r is added to

N L. Our algorithm has no indecision, because the oracle always returns comparable

outcomes.

Let us compare the algorithms in terms of speed. The results are summarized in

Fig. 4.

The computation time of our algorithm exponentially grows with respect to the

density d and the number of variables n (see Fig. 4). We made these experiments on

a laptop with an Intel core i7-4600U with 16Go of RAM (algorithms are

implemented in Python). The experiment conducted in Guerin et al. (2013)

considered fixed d ¼ 1, p ¼ 12, while n varies. The learning procedure takes less

than 1 s for the worst test, while we need more than 2 s to do the same for n ¼ 12.

However, we need about 10 s to learn a CP-net that has 12 variables and a maximum

density graph.

Let us now evaluate the performance of our algorithm when the number of

parents in N T and the number of variables is fixed (here, we, respectively, set 5 and

12), and the number of parents in N L and the ratio vary. Figure 5 shows that the

accuracy increases faster when the number of parents of N L and N T are the same.

However, in case of separable CP-nets (p ¼ 0), a sparse7 CP-net (d ¼ 1) can be

Table 2 Comparison results

between our algorithm (gray

cells) and algorithm of Guerin

et al. (2013) (white cells)

Results are averaged on 10� 3

runs and the best one, for each

test, is written in bold

n Agreement Disagreement Indecision

d ¼ 1

4 0.98 0.02 0.00

1:00 0:00 0.00

8 0.77 0.02 0.21

0:98 0.02 0:00

12 0.65 0:02 0.34

0:97 0.03 0:00

d ¼ 3

4 0.98 0.02 0.00

1:00 0:00 0.00

8 0.80 0:04 0.16

0:93 0.07 0:00

12 0.62 0:04 0.34

0:90 0.10 0:00

d ¼ 1
4 0.98 0.02 0.00

0:99 0:01 0.00

8 0.76 0:02 0.22

0:91 0.09 0:00

12 0.54 0:04 0.42

0:86 0.14 0:00

7 We say that a CP-net is sparse if the adjacency matrix of its corresponding graph is sparse.
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easily learned (more than 80% of accuracy) and their minimum and maximum

values have a bounded variability, contrary to dense CP-nets (d� 3). Furthermore, a

gap between the accuracy of separable and tree-shaped CP-nets is observed. This

can be explained by the fact that the number of possible rules doubles between both

(hence, more preferences can be represented). However, the accuracy decreases

when p changes from 1 to 2. This new parent variable may increase the complexity

of the CP-net structure. Thus, a rule inferred when p ¼ 1 could be modified when

p ¼ 2.

4.2 Learning a CP-net from a database

In this section, we consider that the oracle R is a database that contains a list of

swaps.
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10 δ = 1
δ = 3
δ = ∞

Fig. 4 Learning time according
to the number of variables n. We
set the number of parents to
p ¼ 5. Results correspond to one
learning execution averaged on
10� 3 runs and error bars
correspond to the standard
deviation of the observed values
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δ = 3
δ = ∞

Fig. 5 Learning accuracy
according to the number of
parent variables p. We set the
number variables to n ¼ 12 and
the maximum number of parents

in N T to 5. Results are averaged
on 10� 3 runs and error bars
correspond to the standard
deviation of the observed values
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We use two distinct databases to conduct our experiments:

1. the TripAdvisor database (Wang et al. 2010, 2011) rescaled to obtain binary

attributes (considered here as variables),

2. randomly generated database to test the scalability of our algorithm, and its

robustness to contradictions.

The TripAdisor8 database contains about 240, 000 hotel reviews from about 1, 000

users. A hotel is represented by seven rates (between 1 and 5) plus one general rate.

We use this general rate as our preference relation between the reviews. To be able

to learn a binary CP-net, the rates are rescaled: 1 if the rate is strictly greater than

two, and 0 otherwise. We have, after this procedure, 126 different hotel reviews that

induce a target preference model P that potentially contains contradictions.

We also generate a random artificial database as follows: two random boolean

vectors, such that they form a swap (only one bit changes between both vectors) are

generated along with a random score for each of these vectors. This score

corresponds to our preference relation. To test Algorithm 1, we generate three sizes

of random databases with 50 objects (7 attributes), 500 objects (10 attributes), and

10,000 objects (15 attributes). We set the size of vectors of each database by

applying n ¼ blog2 mc þ 1, with m the number of objects in the database. We

suppose that such a generated synthetic database reflects reality in the sense that a

real database cannot contain all the possible combinations of the attribute values and

some objects may not exist, i.e., m� 2n�1\2n. A preprocessing procedure

transforms a set of objects into a set of swaps.

We first test the importance of having coherent preferences for the learning

phase. Except for the 50 objects database (probably due to the few number of

objects), a gap is observed between the real hotel database and the 500 objects’

database in Fig. 6. Of course, the agreement grows with regards to the maximum

number of parents. The last test consists in relaxing the acyclic condition to observe

the its influence. In this case, we are able to exactly fit P, but at the price of heavy
computations.

Figure 6 depicts the results of Table 3. The accuracy increases linearly with

respect to the number of parents. Once again, one can observe a gap between the

accuracy of separable (p ¼ 0) and tree-shaped CP-nets (p ¼ 1) for all databases, and

a decreasing accuracy between p ¼ 1 and p ¼ 2. The accuracy continues growing

when p[ 2. Furthermore, one can note that the learning procedure is not stable for

small numbers of objects (n\500) because of the number of variables that does not

allow the algorithm to correct the contradictions.

Figure 7 shows the influence of the number of objects m on the accuracy for a

fixed number of variables n. When m � 2n, we can easily fit the structure with an

accuracy greater than 80% (for the 500 and 1000 databases). When the database

contains a number of objects m close to the limited size 2n, the accuracy increases

until about 60%. We can observe the same phenomenon as in Fig. 6, with a negative

gap between p ¼ 1 and p ¼ 2. It occurs for all random databases.

8 http://times.cs.uiuc.edu/*wang296/Data/.

Query-based learning of acyclic conditional\ldots

123

http://times.cs.uiuc.edu/%7ewang296/Data/


Another remark concerns the impact of the order of the answers of the oracle

when Algorithm 1 receives the counterexample swaps. We observe that, for a large

number of swaps, the standard deviation is low (accuracy value �2). This

experimentally demonstrates that, in practice, for a large number of swaps, their

orders have a few impact on the quality of the learning procedure.

0 2 4 6 8 10 12 14

50

60

70

80

90

p

Fig. 6 Learning accuracy
according to the number of
parent p per variable. Databases
are randomly generated except
for the real 126 hotels file.
Results are averaged on 5� 10
runs and error bars correspond to
the standard deviation of the
observed values

Table 3 Accuracy of

Algorithm 1

Results are averaged on 10� 10

runs

Accuracy (%) Agreement Disagreement

p ¼ 1

Real hotels (126) 0.73 0.27

Random hotels (50) 0.72 0.28

Random hotels (500) 0.57 0.43

Random hotels (10,000) 0.52 0.48

p ¼ 5

Real hotels (126) 0.82 0.18

Random hotels (50) 0.82 0.18

Random hotels (500) 0.59 0.41

Random hotels (10,000) 0.51 0.49

p ¼ 1
Real hotels (126) 0.83 0.17

Random hotels (50) 0.79 0.21

Random hotels (500) 0.69 0.31

Random hotels (10,000) 0.66 0.34

Relaxing acyclic condition

Real hotels (126) 1.00 0.00

Random hotels (50) 1.00 0.00

Random hotels (500) 1.00 0.00

Random hotels (10,000) Too long to compute
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At last, we focus on the time taken by Algorithm 1 to learn one CP-net from a

database. We can see in Fig. 8 that this learning task is immediate for m� 1000.

However, whereas we need about 20 s to learn a CP-net from m ¼ 5000 and p ¼ 14,

we need more than 150 s to learn a CP-net from m ¼ 10;000 and p ¼ 14. Thus, for

two times more objects, we need ten times longer to compute it. However, the

computation time increases linearly according to the number of parents: as we need

to browse the whole database, the number of objects m (thus, the number of swaps

s that induce the rules) is a critical factor.

5 Conclusion

We presented in this paper a new algorithm for learning acyclic CP-nets, and

designed a bunch of experiments to evaluate its performances on synthetic and on

real databases, and with respect to the state of the art. They showed that despite its
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Fig. 7 Learning accuracy when
the number of variables is fixed
(n ¼ 15). We increase the
number of objects in the random
databases. Results are averaged
on 2� 5 runs and error bars
correspond to the standard
deviation of the observed values
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Fig. 8 Learning time when the
number of variables is fixed
(n ¼ 15). We increase the
number of objects in the
databases. Results correspond to
one learning execution averaged
on 2� 5 runs and error bars
correspond to the standard
deviation of the observed values
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exponential complexity depending on the number of objects and parents (Propo-

sition 3), our algorithm can learn in a few seconds a CP-net on random CP-nets,

random databases, or real database. Besides, when compared to the online algorithm

in Guerin et al. (2013), our algorithm gives better results in terms of accuracy, but it

generally needs more time to return a CP-net. This result is expected, since our

algorithm is an offline method, while the one in Guerin et al. (2013) follows an

online approach.

The main ingredient of our approach is contradiction handling in the preferences.

The robustness of our algorithm to these contradictions has been evidenced by the

designed experiments. For instance, on a task for hotel rating using a TripAdvisor

database that contains multiple users, and then, many contradictions, our algorithm

achieves good accuracy results.

Future work will concern the improvement of our algorithm from different

standpoints, in particular to reduce its time complexity.

A first effort will concern the implementation of a parallel version of our

searchParent subroutine to decrease the learning time according to Proposition 1.

This will allow to gain at least a n factor. This is especially important as

recommender systems are applied in environments with massive databases such as

social networks.

A second effort will concern the improvement of several critical parts of our

algorithm. The first one concerns the exhaustive nature of equivalence queries.

Since we want a perfect fitting between P and N L (when working with databases),

we must look over all the input data for an answer, which is very time-consuming.

This issue can be overcome by designing an approximate strategy, potentially with

accuracy guarantees. The second critical part concerns the random nature of the

counterexample returned by the equivalence queries. It may occur when the

counterexample does not correspond to the real true preference rule. This leads to

erroneous rule generation.
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